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The mean-velocity profiles and entrainment rates in the similarity region of a 
two-dimensional jet are generated by a simple superposition of Rankine vortices 
arranged to represent a vortex street. The spacings between the vortex centres, their 
two-dimensional offsets from the centreline, as well as the core radii and circulation 
strengths, are all governed by similarity relationships and based upon experimental 
data. 

Major details of the mean flow field such as the axial and lateral mean-velocity 
components and the magnitude of the Reynolds stress are properly determined by 
the model. The sign of the Reynolds stress is, however, not properly predicted. 

1. Introduction 
Recognition of the importance of the large-scale structures in turbulent shear flows 

dates back to Towsend (1  956) and Grant (1958). Most of the current emphasis on this 
aspect of turbulent fluid mechanics is a result of the experiments conducted in a plane 
mixing layer by Brown & Roshko (1971, 1974), Winant & Browand (1974) and 
Browand & Weidman (1976). These investigations have clearly illustrated the 
presence of large, essentially two-dimensional roller vortices with axis perpendicular 
to the plane of mean shear. The coherent structures scale on the dimensions of the 
mean flow, and it is apparent that the growth rate of the mixing layer is controlled by 
the rate a t  which the structures coalesce. Both the mixing-layer growth rate and the 
eddy-coalescence rate are independent of the Reynolds number of the flow. 

The strongest indication of a coherent structure in two-dimensional jet flows is the 
well-documented ‘flapping ’ phenomena. This characteristic is easily detected by 
measuring the correlation function between the fluctuating longitudinal velocities a t  
symmetric points on either side of the jet centreline. At zero time delay, the 
correlation is negative, thereby indicating that instantaneous transverse distributions 
of the velocity fluctuation are on the average asymmetric. For increasing time delays, 
the correlation function has the alternately positive and negative values that are 
characteristic of periodic phenomena. This behaviour in two-dimensional jets has 
been compared to the flapping of a flag in which the centreline of the mean-velocity 
profile is periodically displaced about its average position. It was thought that  the 
flapping was essentially a travelling-wave instability rather than an indication of a 
coherent large-scale structure. ‘ Flapping ’ two-dimensional jets have been reported 
by Bradbury (1965), Goldschmidt & Bradshaw (1973), Gutmark & Wygnanski (1976), 
Everitt & Robins (1978), and Cervantes (1978, 1980). 

An alternative explanation for the periodic correlation function is the presence of 
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(loherent large-scale eddies arranged in a pattern similar to  the classical von Karmari 
vortex street as shown in figure 1. A plane jet flow containing this structure would 
exhi bit instantaneously asymmetric distributions of longitudinal velocity fluctuation 
and is inherently periodic. 

In  the detailed measurements by Cervantes (1978). he noted that the streamwise 
variation of the ‘flapping’ frequency is compatible with the similarity scaling 
relationships for a plane jet. Consequently, the ‘flapping ’ frequency 4. when non- 
dimensionalized by local mean-velocity scale and lengthscale, is equal to a constant 
Sf = f$ h / u ,  z 0.1. Here the local scales are chosen to be the mean centreline velocity 
urn and the jet half-width 6. The same observation and determination of the 
dimc>nsionless frequency were made by Oler & Goldschmidt (1980) from measurements 
of structural-passage frequency in the intermittent region of a plane jet. Approximate 
agreement with this value of Sf may also be inferred from the ‘flapping’ jet 
investigations by Bradbury (1965), Goldschmidt & Bradshaw (1973), Gutmark & 
Wygnanski (1976) and Everitt & Robins (1978). This agreement on the dimensionless 
flapping frequency implies a Reynolds-number independence that was verified by 
Cervantes. Both the mean-flow scaling of thc structural-passage frequency and its 
Reynolds-number independence bear a strong resemblance to the large-scde structure 
in plane mixing layers. 

Recent flow-visualization experiments by Moallemi (1980) strongly suggest a 
vortex street pattern of the large structures in a plane jet. By stretching oil-coated 
smoke wires parallel to and on either side of the jet centreline in the ambient fluid, 
the silhouette of apparently two-dimensional large eddies could be discerned as the 
smoke convected into the turbulent-non-turbulcnt interface. This imagc is reinforced 
by two-point crrrelations of the longitudinal velocity fluctuation reported by Oler 
& Goldschmidt (1981). When presented in the form of an isocorrelation contour map, 
thrx prescnc’e of a vortex-street pattern is clearly indicated. 

To caoncludc, there are a number of factors that  may be interpreted to suggest that 
the largc-smle structure of a fully developed plane jet is similar to the classical von 
Karman vortcx street. A numerical simulation of a hypothetical jet characterized by 
this structure is described in the following sections. 

2. A numerical simulation 
The similarity region of a two-dimensional jet is simulated with a vortex street 

struvture such as that illustrated in figure 1 .  By utilizing a linear superposition of 
Rankine vortices, the velocity a t  any point in the flow field is determined by the 
additive eflects of all vortices making up the pattern. Although a reasonable 
approximation might have been to superpose the vortex-street structure onto an 
otherwise homogeneous mean Pow, that  approach is not utilized in the present 
inrcstigation. It is assumed instead that the vortices are themselves totally responsible 
for the mcan-flow field. 

The largc-scale structures are of principal interest in the simulation, and con- 
seyuently the smaller turbulent scales have not been modelled directly. However, 
the small scales and the associated eddy viscosity may be considered as being respons- 
ible for the cores of the Rankine vortices. 

As was shown from similarity arguments by Oler & Goldschmidt (1980), the number 
of large structures per unit length in a plane jet should decrease with respect to 
downstream distance in proportion to x-3. It is not clear whether this is accomplished 
through an eddy-coalescence mechanism, as in the plane mixing layer. or simply an 



Two-dimensional free turbulent jet 525 

imbalance in the generation and destruction of the large structures. I n  the numerical 
simulation, the reduction in the number of vortices with respect to downstream 
distance is included. However, the contribution of the mechanism of reduction to the 
calculated flow properties has not been represented in any way. One might suspect 
that this is a critical omission, since conditionally sampled measurements in the 
mixing layer have indicated large values of Reynolds-stress production in the region 
of an eddy-coalescence event. 

For the model formulation and calculated results presented herein, all quantities 
have been made dimensionless by the jet exit conditions, i.e. the slot width D and 
exit velocity uo. It is assumed that the jet to be modelled is characterized by spreading 
and velocity decay rates given by 

b = Px, 
-1 u, = c, x 2 )  

where P = 0.1 and CVm = 2-38. 

have the classical velocity distribution of a diffusing line vortex given by 
The basic element of the vortex-street model is a Rankine vortex. These vortices 

vg = { 1 - exp [ - 1.26 (3]]. 
2nr (2.3) 

Here the core radius has been chosen to coincide with the position of maximum 
velocity. The net velocity components at a point (x,y) resulting from the linear 
superposition of N Rankine vortices having coordinates (xi, yi) are given by 

where 

(2 .4a)  

( 2 . 4 b )  

From figure 1 ,  i t  may be noted that the parameters required to describe the vortex 
street uniquely are the co-ordinates, radius and strength of each vortex. Since the 
plane jet is a self-preserving flow and the vortex street is expected to satisfy structural 
similarity requirements, the descriptive parameters may be defined in terms of global 
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length and velocity scaling relationships. Specifically, for a plane jet, lengthscales are 
expected to vary in direct proportion to x, while velocities go as x-i. 

As illustrated in figure 1 ,  one vortex with a negative lateral coordinate is 
arbitrarily chosen as a reference vortex with coordinates denoted by (xo, yo). By 
applying the similarity-scaling relationships, the lateral coordinate, core radius, and 
strength of any other vortex may be expressed as 

( 2 . 5 ~ )  
( 2 . 5 b )  

( 2 . 5 ~ )  

where xi is the longitudinal coordinate of the ith upstream xui, or downstream xdi 
vortex, C,, C,, and C, are as-yet undefined proportionality constants, 

As the vortices move downstream, the pattern wavelength increases, convective 
velocities decrease, and the number of vortices per unit length diminishes through 
coalescence or a similar mechanism. All of these features must be accounted for in 
the determination of the longitudinal vortex coordinates. 

Let us and f s  be the vortex convective velocity and passage frequency respectively. 
The number of vortices per unit length, or vortex density, is 

where the factor of 2 is a consequence of there being two vortices in each 
wavelength of the pattern. From similarity considerations, 

f s  = c,x-%, 

us = cux-B, 

(2 .7a)  
(2.7 6) 

so that (2.6) may be written as 
( 2 . 8 )  

2Cf -1 

C U  

n , = - - x  . 

Let the reference vortex be instantaneously located at (xo,y,,). The number of 
vortices between x,, and some downstream station xd may be found by integrating 
the vortex density with respect to x. The position of the ith downstream vortex is 
such that the number of vortices between xo and xdi is equal to i .  Utilizing (2.8) yields 

or 

Thc position of the ith upstream vortex is found in an analogous manner: 

(2.10) 

(2.11) 

To summarize, given the instantaneous location of the reference vortex, the 
longitudinal coordinates ofall thc other vortives may be found from (2.10) and (2.11). 
The lateral coordinates, strengths and core radii may then be calculated from ( 2 . 5 ) .  

The total induced velocity a t  a point exhibits a time dependence that is governed 
by the movement of all the vortices making up the vortex street pattern. Thc time 
averages of the fluctuating velocity may be found by integrating with respect to time 



Two-dimensional f ree  turbulent j e t  527 

over one period of the pattern as i t  passes any transverse plane. When calculating 
the averages, provision must be made for the streamwise variation of the convcctivc 
velocity and recombination rate of the vortices. 

Consider the convection of vortices past a transverse plane a t  2.  During a timc 
interval 7 the number of vortices that cross the plane is given by 

r7 
A(2 ,  7) = J us n, dt  

0 
(2.12) 

or A(2,  7 )  = 2Cfdf7. (2.13) 

If xo = Z a t  t = 0, then the number of vortices that have passed x" a t  t = 7 must 
be equal to the number of vortices between Z and xo. From (2.9) and (2.13) this 
equality may be written as 

(2.14) 2C, xo - In = 2C,2-17, 
C, x 

or xo = 2 exp (C,x"-g7). (2.15) 

The preceding relationship defines the time-dependent position of the reference 
vortex given that a t  t = 0 it is located a t  xo = 2.  The position of the other vortices 
in the structural pattern may be found from (2.10) and (2.11) so that  the time 
dependence of the complete velocity field is determined. Mean values of the flow 
properties may then be determined by averaging over one wavelength of the 
vortex-street pattern as it passes Z or until the number of vortices between 2 and 
xo is equal to 2. 

As formulated, the numerical simulation requires the specification of five propor- 
tionality constants: C,, C,, Cr, C, and C,. These are utilized in similarity relationships 
to describe the streamwise variation of the vortex lateral coordinate, core radius, 
strength, passage frequency, and convection velocity. 

The passage-frequency and convection-velocity coefficients are set equal to  2.36 and 
1.18 respectively, on the basis of experimental data (see Cervantes 1978; Oler & 
Goldschmidt 1980; Moallemi 1980; Oler 1980). The values for the strength, lateral- 
coordinate and core-radius coefficients are chosen to be such that the agreement 
between the calculated and experimentally determined mean-velocity profile a t  
x = 45 is optimized. This results in Cr = 2.597, C, = 0.04 and C, = 0.13. It should 
be noted that Moallemi (1980) has estimated C, = 0.05 on the basis of flow- 
visualization experiments. It should also be emphasized that, once determined, the 
coefficients are held constant, and the streamwise variations of the vortex street 
parameters are determined strictly on the basis of the similarity relationships. 

3. Simulation results 
The mean longitudinal velocity at (x, y) is calculated from 

I PT 

U ( x ,  y) = - u(x, y; t )  dt .  (3.1) 
;I J, 

The resulting transverse distributions of U(x, y/b)/u,(x) are illustrated in figure 2 for 
x = 15, 30, 45, 60 and 75. Also included in the figure are experimentally determined 
distributions and the analytical prediction of Reichardt (1943), 

u 
- = CXP ( -0.69372), 
urn 

(3.2) 
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FIGITRE 2 ,  Lateral dist.ribution of the mean longitndinal velocity component. Calculated profiles; 
0, x = 15; 0, 30; A, 45; v, 60; 0 ,  7 5 .  Profiles measured with a Pitot tube: 0 ,  x = 20; ., 35;  
A, 50. Theoretical prediction by Reichardt (1943) : -. 

X 

FIGURE 3. Streamwisr variation of the mean centreline velocity: 0, calculated; 
-, measurements by Oler (1!$80). 

where 7 = y//3x. The velocity half-width utilized for the scaling of the transverse 
coordinate is taken to be b = 0 . 1 ~  for both the experimental and calculated 
distributions. 

The collapse of the calculated profiles from the various transversp planes onto the 
reduced coordinate 7 = y/b supports the manner in which the self-preserving 
characteristics of real jet flows are incorporated into the jet simulation. To further 
illustrate the capability of the model to duplicate similarity scaling, the calculated 
variation of the mean centreline velocity u,(x) is given in figure 3, along with 
measured data. 

Mean lateral velocities may be calculated numerivally from 

I rT 
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FIGURE 4. Lateral distribution of the mean lateral velocity component: 0, calculated profile : -, 
experimentally derived by Gutmark & Wggnanski (1976) ; - --, asymptotic limit derived by 
Townuend (1956). 

Ylb 

FIGURE 5.  Lateral distribution of the Reynolds stress. 0, calculated. Measurements by Jenkins 
& Goldschmidt (1974): +, z = 35; 1. 45. Measurements by Gutmark & Wygnanski (1976): A, 
s = 100; -, 100 (derived using (3.6)). 

Figure 4 illustrates the resulting transverse distribution @(x, y /b) /u , (x ) .  Also 
indicated on the figure are the asymptotic value of the entrainment velocity given 
by Townsend (1956) and the distribution calculated from continuity using f ( r ) ,  the 
experimentally determined longitudinal velocity distribution, i.e. 

(3.4) 

where g ( r )  = @/urn. The jet-simulation results compare favourably with these. 

velocity fluctuations, i.e. 
Local values of the Reynolds stress are calculated as the product of instantaneous 



530 J .  W .  Oler and V .  W .  Goldschmidt 

0 0  
0 

o c  
e 4  

0 

A 
0 

b *+  
I I 
1 2 3 

vlb 

FIGURE 6. Distribution of longitudinal fluctuation intensity. 0, calculated. Measurements by 
Chambers & Goldschmidt (1982): 0 ,  z = 20; a, 40; A, 60. 

The resulting distributions of lu"(x, y/b)/ [ u ~ ( x ) ] ~ ~  aregiven in figure 5 .  For comparison, 
experimentally determined distributions by Jenkins & Goldschmidt (1974) and 
Gutmark & Wygnanski (1976) are given in the figure. The distribution of Reynolds 
stress may also be determined by integrating the momentum equation while utilizing 
the continuity equation, similarity relationships and a mean longitudinal velocity 
profile. The result is 

(3.6) 

where q(q)  = - n / u & .  The Reynolds stress determined in this manner is also 
included in figure 5. 

It should be noted that only absolute values are plotted in figure 5. This is a 
consequence of the inability of the stimulation to  predict the correct sign for the 
Reynolds stress. The simulation predicts negative values of the eddy viscosity 
,ut = - p m / ( a t i / a y ) .  The magnitude of the predicted Reynolds stress is, however, 
easily within the uncertainty limits of the data. It is indeed surprising that the model, 
which is nothing more than a kinematic simulation of the flow, is capable of predicting 
the magnitude of a dynamic property of the 'turbulent' field such as the Reynolds 
stress. The opinion held by the authors is that the incorrect sign for the turbulent 
shear stress involves a subtle deficiency in the present kinematic representation that 
can only be overcome through consideration of the dynamics of the energy-transport 
processes. 

d r )  = - i P  J 4 [fW+, df(r) s, f ( ? ) d r l ] d %  

'Turbulent ' fluctuation intensities are calculated from 

and a similar expression for the lateral fluctuations. The calculated distributions are 
illustrated in figures 6 and 7. As presently formulated, the vortex-street model fails 
to represent the fluctuating velocity field accurately. Although the calculated 
distributions are qualitatively reasonable, the magnitudes of the lateral fluctuations 
are about twice the experimental values, and the longitudinal fluctuations near the 
axis are much lower than the experimentally determined ones. 

These discrepancies are directly related to the neglect of the small-scale turbulence 
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FIQURE 7.  Distribution of lateral fluctuation intensity. Symbols as in figure 6. 
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0 
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and the simplicity of the Rankine vortex model. The extremely high values of the 
lateral fluctuations are a result of the linear superposition of the velocities induced 
a t  the midpoint bet.ween counter-rotating vortices on opposite sides of the centreline. 
I n  these regions, the total velocities are about twice what either vortex would induce 
alone. Undoubtedly, the inclusion of small-scale turbulent-diffusion effects would 
limit the unreasonably high local strain rates predicted by the current vortex-street 
model. 

As with the distributions of turbulent-fluctuation intensity, other flow properties 
that  are intimately related to the small-scale fluctuations cannot be predicted by the 
present model. For instance, the turbulent-kinetic-energy equation cannot be 
evaluated, since there is no representation of the eddies that accept energy from the 
large scales or the smallest eddies that provide for the viscous dissipation of energy. 
Similarly, nothing may be inferred concerning the turbulent-energy spectra, since the 
model only represents the lowest-frequency components. 

4. The mechanisms of entrainment and Reynolds-stress production 
On the basis of the calculated results from the vortex-street model, i t  is apparently 

the large eddies that are responsible for entrainment and Reynolds-stress production. 
Insight into the manner in which this is accomplished may be gained by using the 
model to postulate the flow fields that would exist for jet spreading rates other than 
the naturally occurring one. An examination of those calculations leads to the 
conclusion that point values of Reynolds stress and entrainment velocity are a con- 
sequence of the streamwise variation in the size, spacing and strength of the large 
eddies. 

Since the spreading rate is incorporated into the vortex-street model as a 
lengthscale, i t  is a simple matter to vary the spreading rate and observe the effect 
on the calculated flow field. For each calculation, the velocity scale is adjusted so that 
the momentum flux is equal to that of the naturally occurring flow. This leads to 

or 
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FIGURE 8. Effect of the spreading rate on the mean longitudinal velocity profile. Calculated: v, 
/l = 0.25; 0, 0.15; 0, 010; A, 0.07; 0 ,  0.03. Theoretical prediction by Reichardt (1943): -. 

FIGURE 9. Effect of tjhe spreading rate on the mean lateral velocity profile. Results from the 
stimulation: open symbols as in figure 8. Derived from the self-preserving profile: - --, ,L? = 0.25; 

0.15. __ 0.10.. _ _  - 0.07. -..-, 003. 

For a particular p, C, is determined from (4.2). Then C,, C,, C,, and C, are changed 
proportionately from the values that are appropriate for the naturally occurring flow. 
These proportionality constants are not re-optimized for the postulated spreading 
rates. 

over a wide Figures 8, 9 and 10 illustrate calculated distributions of a, V and 
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FIGURE 10. Effect of the spreading rate on the Reynolds stress distribution. 
Symbols as in figure 9. 

range of hypothetical spreading rates. For comparison, the corresponding distribu- 
tions from (3.2), (3.4) and (3.6) are also given. As the spreading rate goes to zero, 
the mean longitudinal velocity profile is unchanged while the Reynolds stress and 
lateral velocity uniformly approach zero. This trend to zero illustrates that utilizing 
a viscous vortex model such as the Rankine vortex and arranging the vortices into 
a vortex-street pattern do not in themselves force the generation of non-zero averages 
of turbulent stress and lateral velocity. Furthermore, it is clear that  the point 
averages of these properties are intimately related to the streamwise development 
of the individual vortices and the vortex street as a whole. 

The essential difference between the spreading and non-spreading flows is the 
relative influence of the large eddies upstream versus those downstream of the 
particular point of interest. In  the hypothetical non-spreading flow, a perfectly 
symmetric influence is felt, whereas the influence is non-symmetric in a developing 
flow. The process may be described as follows. First, as a consequence of the inherent 
instability of the mean-velocity field, a series of large counter-rotating eddies are 
produced. From their point of origin, the eddies diffuse continuously as they are 
convected downstream. The individual vortices eventually lose their identity through 
a decay, break-up or coalescence process, but the generation, diffusion and destruction 
sequence is continuously repeated. At a fixed point, the simultaneous influences are 
felt from comparatively small vortices upstream of the point and larger vortices 
downstream. The net effect of the non-symmetric upstream and downstream 
influence of each vortex that passes the point is to produce non-zero averages of 
Reynolds stress and entrainment velocity. 
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5.  Conclusions 
A numerical simulation of the vortex-street model for the large-scale structures of 

a turbulent plane jet has been described. The formulation includes the effects of 
streamwise flow development through the expression of geometry and vortex 
parameters in terms of similarity-scaling relationships. 

The calculated results indicate that the hypothesized structure is capable of giving 
virtually exact representations of the velocity decay rate, mean-velocity profiles, and 
the Reynolds-stress distribution. Although the qualitative shapes of the fluctuation- 
intensity profiles are reasonable, the magnitudes are in considerable error. This is a 
consequence of the failure to include the effects of the small-scale turbulence directly. 

Unfortunately, the model predicts a negative turbulent viscosity. There is the 
possibility that the entire concept of a vortex-street structure is invalid. However, 
this is difficult to accept owing to the experimental evidence, which suggests such 
a structure, and the capability of the model to predict distributions of ti, v and 
accurately. It is suggested that the problem with the Reynolds stress may be resolved 
through the inclusion of relationships describing the dynamics of the energy-transport 
processes and that further research be made in this area. 

It is evident that the key feature of the vortex-street model is the inclusion of the 
effects of global flow development on locally measured or calculated turbulent-flow 
properties. The essential mechanism for the production of Reynolds stress and 
entrainment appears to be the non-symmetric influence of the upstream and 
downstream large-scale structures as they diffuse and are convected past a particular 
point of interest. 

The work reported is part of an overall effort funded by the Office of Naval 
Research (30014-75-C-1048) and the National Science Foundation (GK 19317h3, 
Eng. 74-20780). Their support is gratefully acknowledged. 

The authors would also like to express their appreciation to the referees for their 
valuable comments and criticisms. 
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